P5 Final Presentation UID & Authorship Obfuscation

Nick Abegg

Research Question

Explore the applicability of UID metric in the task of obfuscation. Specifically investigate if UID can be used as a guiding metric to result in successful obfuscation in which an automated authorship attributor misattributes an obfuscated article.

Intro

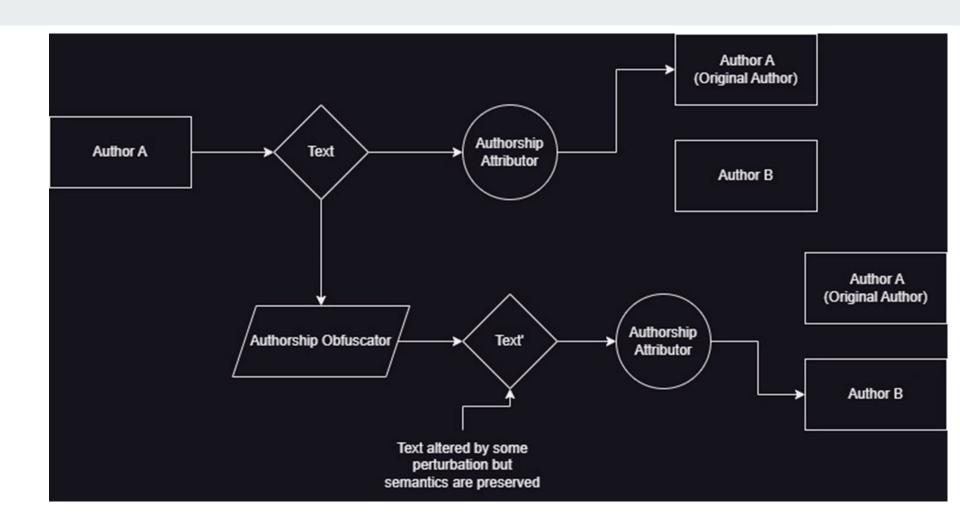
- Authorship Obfuscation vs. Authorship Attribution
- Psycholinguistic theory/UID
- Synonym Swap Review

Authorship Attribution and Obfuscation

Authorship Attribution - Process of taking a text of unknown authorship and attributing the authorship amongst a number of known authors

Authorship Obfuscation - Take some text and obscure the original author through some perturbation.

Authorship Obfuscation is successful if it is capable of deceiving an AA into attributing the incorrect author of a text



Psycholinguistic/UID

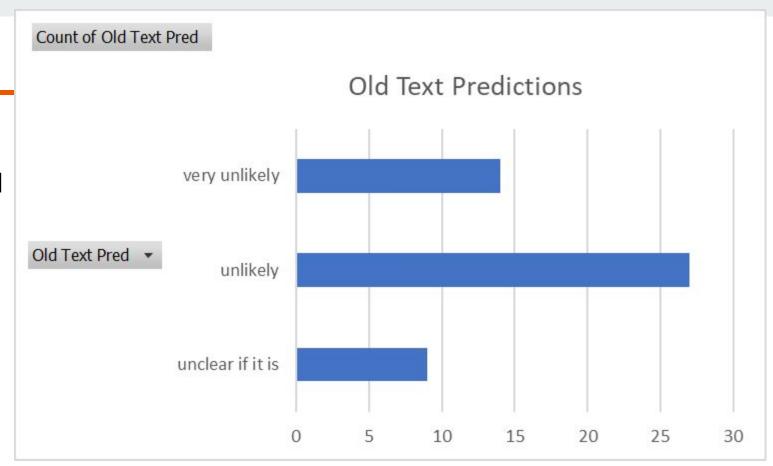
Uniform Information Density (UID) Theory - suggest that humans optimize their speech and text so as to uniformly distribute information over an entire message (Frank and Jaeger [2008])

- Do so in effort to maximize efficiency in communication
- Both humans and language models follow UID patterns which can be quantified in a variety of ways (Venkatraman et al. [2023]), (Meister et al. [2021]).
- Possibly altering the UID score of an article could lead to successful obfuscation

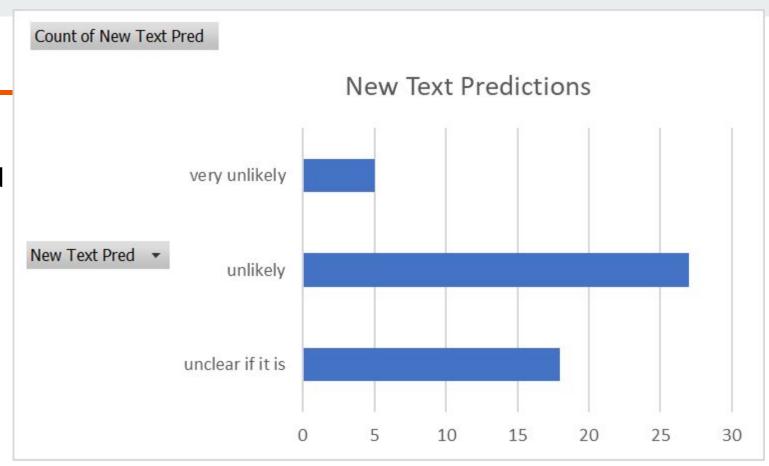
Synonym Swap

- First algorithm developed, very simple
- Find most likely synonyms for a particular word in a sentence, swap most probable according to GPT-2 Language Model
- Demonstrated that even a small change to an article could throw off an attributor's labels
- Quality of swaps were poor as a result of GPT-2 and Wordnet

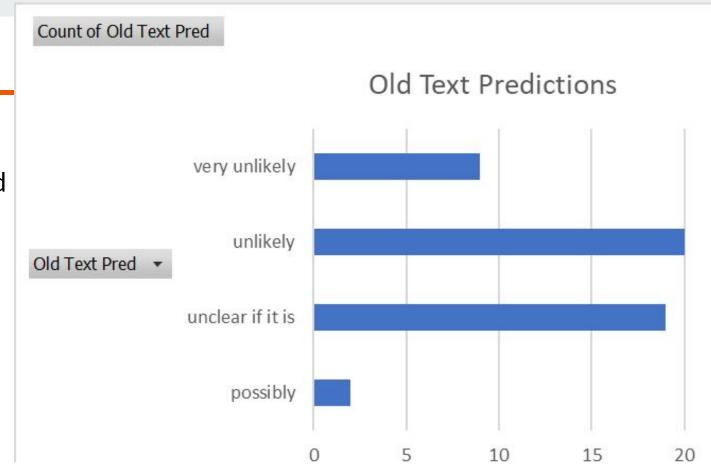
Unaltered Human Generated Text



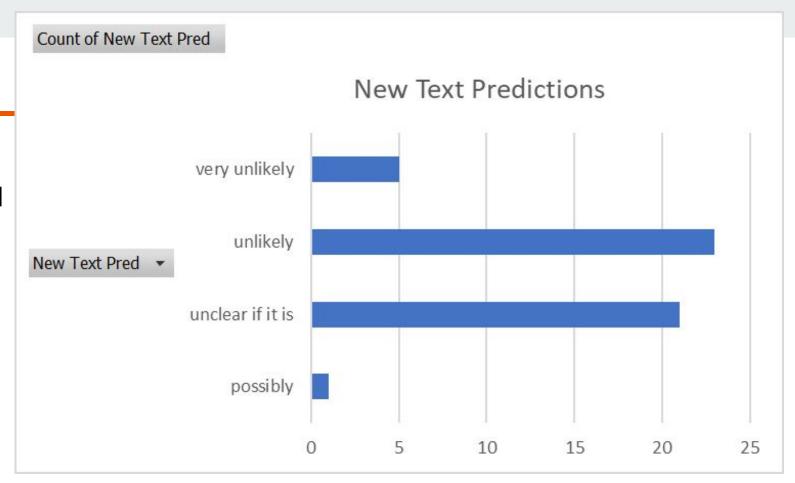
Altered Human Generated Text



Unaltered Machine Generated Text

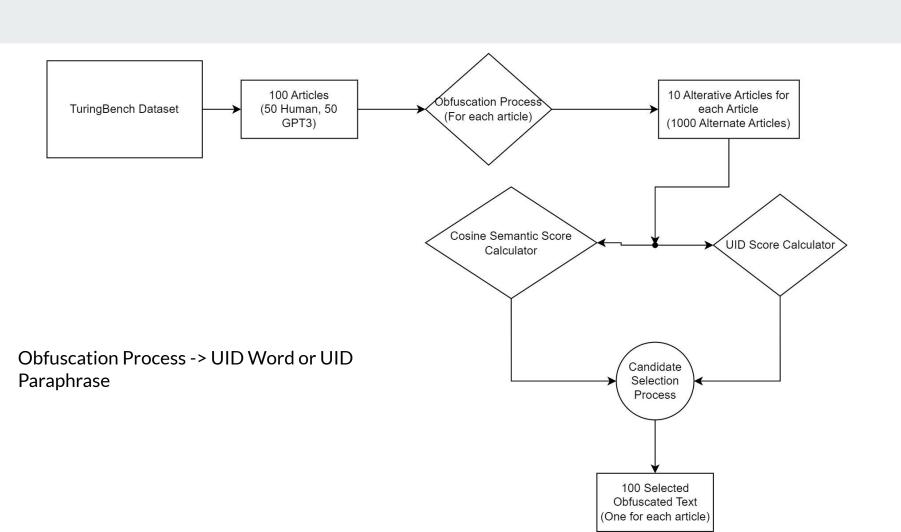


Altered Machine Generated Text



Problems with Synonym Swap

- WordNet does not account for context of the sentence
- GPT-2 cannot examine the tokens after the target word and thus, misses much needed context
- Only generated 1 new sentence based on the most probable token
- Does not account for UID or semantic similarity



TuringBench

- Dataset containing 200,000 articles human and machine-generated text
- The authors consisted of 19 language models and human authored text
- Language models: GPT-1, GPT-2_small, GPT-2_medium, GPT-2_large, GPT-2_xl, GPT-2_PyTorch, GPT-3, GROVER_base, GROVER_large, GROVER_mega, CTRL, XLM, XLNET_base, XLNET_large, FAIR_wmt19, FAIR_wmt20, TRANSFORMER_XL, PPLM_distil, PPLM_gpt2
- Human text from The Washington Post, CNN, Breitbart
- Pooled a small subset of articles from dataset, 50 human, 50 GPT-3

(Uchendu et al. [2021]).

Cosine Semantic Similarity

- Using scikit-learn, we calculate the cosine semantic similarity
- Calculated for each alternate article compared to the original article
- The cosine similarity between two vectors A and B is given by the formula:

cosine_similarity = dot_product(A,
B) / (norm(A) * norm(B))

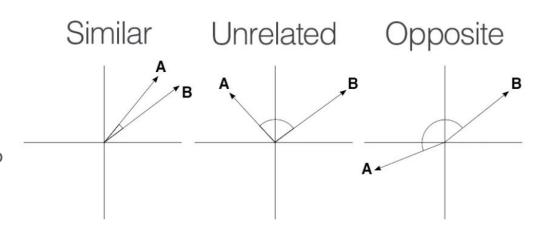


Image:

https://medium.com/@milana.shxanukova15/cosine-distance-and-cosine-similarity-a5da0e4d9ded

UID Score

For each article and its alternates we also calculated the UID Scores

- UID Score 1 -> UID Score(Variance)
- UID Score 3 -> UID Score(Difference^2)

For both, need surprisal -> the negative log probability of a token given the previous tokens

Variance - obtained by calculating the variance of the surprisals for all tokens within the article.

Difference² - calculate the average of the squared differences in surprisals for every two consecutive tokens within the article.

UID Word Swap (UWS)

- UWS was created first, hoped to iterate and improve on Synonym Swap
- UWS utilized DistilBERT in a Masked Language Model approach to conduct the word swap
- Should address both the inability of GPT-2 to have context of tokens later in the sentence and Wordnet's poor synonym selection

The man cried out in pain

Synonym Swap:
The man [MASKED] out in pain

The man wept...
The man sobbed...
The man grieved...

UID Word Swap:
The man [MASKED] out in pain

The man yelled...
The man screamed...
The man howled...
The man shrieked...

UID Word Swap

```
def bert_swap(masked):
   # get tokens for masked sentence
   inputs = tokenizer(masked, return tensors="pt")
   # calculates the probability of the sentence
   with torch.no grad():
        logits = model(**inputs).logits
   # retrieve index of [MASK]
   mask token index = int((inputs.input ids == tokenizer.mask token id)[0].nonzero(as tuple=True)[0])
   # get 10 most probable tokens
   most prob tokens = torch.argsort(logits[0,mask token index])[-10:]
   # decode those tokens
   most prob words = tokenizer.decode(most prob tokens)
   most prob words = most prob words.split()
   prob words list.append(most prob words)
   most prob sentences = []
   # insert the 10 most probable tokens into 10 seperate sentences
   for i in range(len(most prob words)):
        new sentence = masked.replace('[MASK]', most prob words[i])
        most_prob_sentences.append(new_sentence)
   return most prob sentences
```

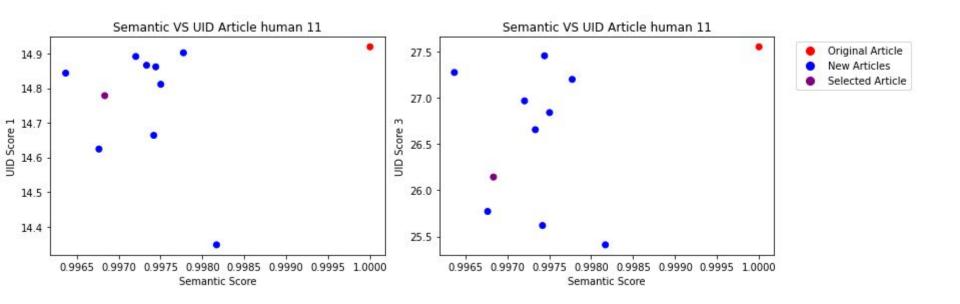
UID Word Swap Example

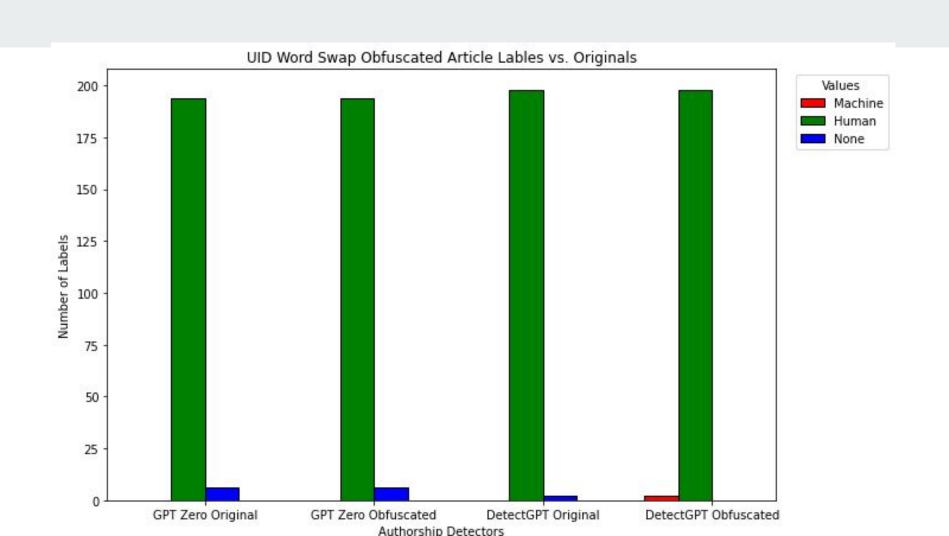
washington () at a time when president donald trump seems to permeate nearly every aspect of american discourse, it might come as surprise that the first movie from barack and michelle obama's production company, higher ground, never mentions him by name.but subtlety is part power factory, new netflix documentary charts r ening factory in dayton, ohio. over course two hours, movie, directed seasoned documentarians steven bognar julia reichert, serves quiet historical political corrective, offering their portrait state america's industrial heartland prodding viewers rethink who, exactly, project.american starts on december 23, 2008, crowd gathers learn general motors plant dayton has shuttered. then fast-forwards 2015, ens enterprise, fuyao glass america, arm shanghai-based company manufactures automotive glass. one man makes fuyao's expanded mission crystal clear: what we're doing melding cultures together: chinese culture s culture. so we are truly global organization.as some critics have pointed out, is, important ways, commentary unpredictability globalization; york times review frames underscoring haves have-nots.but it's also much more than that. arrives moment white house continues make vociferous, bold claims about economy, particularly manufacturing. that's despite increasing concerns economists warnings history recession could be horizon. there's sobering contrast between trump's rhetoric how job growth ballooned during his presidency reality broader slowdown slamming states -- including ohio helped win 2016 presidential election.read

washington () at a time when president donald trump seems to permeate nearly every aspect of american discourse, it might come as surprise that the first movie from barack and michelle obama 's publishing company, higher ground, never mentions him by name.but subtlety is part power factory, new netflix documentary charts rening factory in dayton, ohio. over course two hours, movie, directed seasoned documentarians steven bognar julia reichert, serves quiet historical political corrective, offering their portrait state america 's industrial heartland helps viewers rethink who, exactly, project.american starts on december 23, 2008, crowd gathers learn general motors plant dayton has shuttered. then fast-forwards 2015, ens enterprise, fuyao glass corporation, arm shanghai-based company manufactures automotive glass. one man makes fuyao 's expanded mission crystal clear: what we 're doing bringing cultures together: chinese culture s culture, so we are truly global organization.as some critics have pointed out, is, important ways, commentary upon globalization; york times review frames underscoring haves have-nots.but it 's also much more than that arrives moment white house continues make vociferous, conflicting claims about economy, particularly manufacturing, that 's despite increasing concerns economists thought history recession could be horizon. there 's sobering contrast between trump 's rhetoric how job growth ballooned during his political reality broader slowdown slamming states -- including ohio helped win 2016 presidential election.read

Human (Labeled Human before and after)

UWS





UWS Challenges

Main problem, lack of diversity amongst UID scores

Just swapping one word each sentence didn't seem enough to push the UID score in any major way

Way to drastically alter the articles to get more significant UID variation

UID Paraphrase (UP)

- Developed after UID
 Word Swap, hoped to
 result in greater variation
 to UID without losing too
 much semantic similarity
- Utilize diverse beam search to paraphrase each sentence in each article
- Attempted the process on mostly every sentence in the article

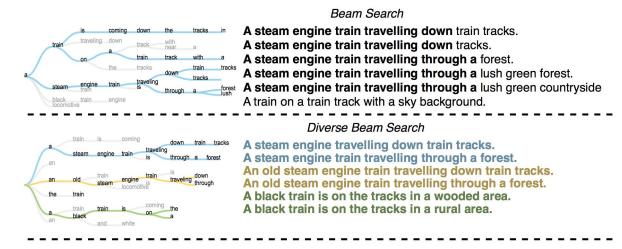
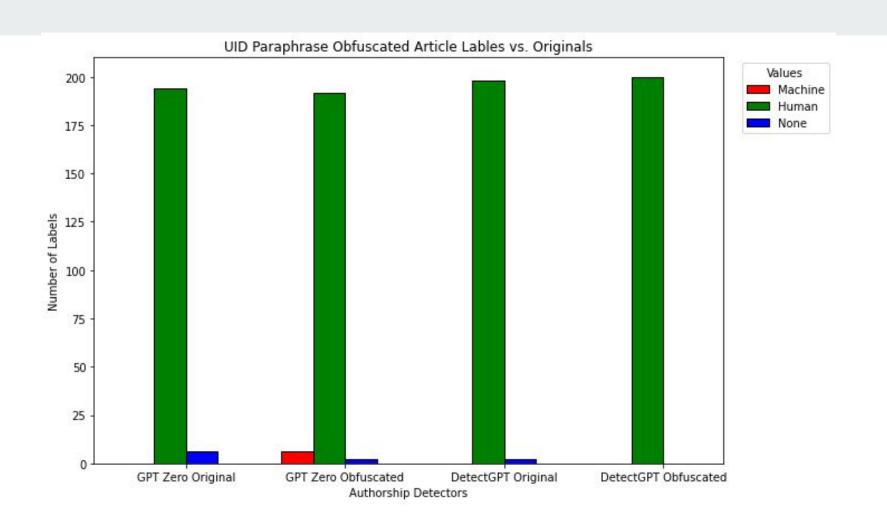


Image: https://github.com/kweonwooj/papers/issues/32

```
def ParaSwap(sentence):
   new articles = []
   # Diverse Beam search
   context = sentence
   text = context + " </s>"
   encoding = phrase tokenizer.encode plus(text, padding=True, return tensors="pt")
   input ids,attention mask = encoding["input ids"], encoding["attention mask"]
   phrase model.eval()
   diverse beam outputs = phrase model.generate(
        input ids=input ids,
        attention mask=attention mask,
        num beams=10,
        num beam groups=10,
        num return sequences=10,
        diversity penalty=0.70,
        max length=500, # Increase the max length value as needed
   print (" \setminus n \setminus n")
   print ("Original: ",context)
    for beam output in diverse beam outputs:
        new articles.append(phrase tokenizer.decode(beam output, skip special tokens=True,clean up tokenization spaces=True
   return new articles
```



UID Paraphrase Problems

Selected Articles

related, as the 15th lok sabl related. The 15th session of Human

exit g rgaon rallyaug 25, 2(. What's your must do list for GPT-3 researchers in denmark well As the country's wolves have GPT-3 researchers in denmark well As the country's wolves have GPT-3. new delhi: days before the . On twitter, the delhi's body GPT-3. new delhi: days before the . On twitter, the delhi's body GPT-3 google s'est associe avec la The best s'est associe with la GPT-3 google s'est associe avec la The best s'est associe with la GPT-3

Original Articles

related. as the 15th lok sabl related. The 15th session of I Human	1	1	1	1	
markets ended the last mor The last month saw a rise of a Human	1	1	1	1	
markets ended the last mor The last month saw a rise of a Human	1	1	1	1	
it was never a question that It was never a question that (Human	1	1	1	1	
it was never a question that It was never a question that (Human	1	1	1	1	
related. india said that the vrelated. The global bank ban Human	1	1	1	1	
exit g rgaon rallyaug 25, 21. What's your must do list for GPT-3		1	1	1	1

True Labes

GPTZero Orig GPTZero DetectGPTDetectGPT Selected

UID Paraphrase Example

. sheena gupta, 32, who is based out of mumbai, always tries to lead the conversation her friend kotak's facebook wall when they meet. i can't tell you number times hear: hey, what did post on my wall? has a group friends in delhi and mumbai created through social networking platforms, said.'

'. When they meet, sheena gupta, 32, who is based out of mumbai, continues to lead the discussion with her friend kotak's facebook wall... Hey, what did you see on my wall? i can't tell you how many times i can't tell you how many times i can't tell you how many times i hear. According to delhi and mumbai, a group of friends in delhi and mumbai formed through social media platforms.'

GPT-3 UID Score Variance (Labeled: Human switched to machine)

UID Paraphrase Example

political novice, who polled between 30 50 percent private polls, forced confront state lawmaker mike kennedy, started raising money polling around 20 his race, public policy polling.tue, 09:33:12 -0700brazil will not roll back current mix, finance minister: di luzio(sharecast brazil's government existing policies that aimed reassuring investors undo incoherently assembled patchwork, minister henrique meirelles told journalists on tuesday, what'

GPT-3 UID Score Variance (Labeled: Human switched to machine)

Candidate Selection Process (for both UWS and Paraphrase)

- Process attempts to cause the biggest change for obfuscation with regards to UID score whilst still being semantically similar
- Calculates the differences for both
 UID scores for each article
- Sorts the differences
- Finds the highest difference article that passes the similarity score threshold

```
def candidate_select(num article, article):
   index = num article * 11
   max index = index + 11
   UID1 Difference list = []
   UID2 Difference list = []
   original article = article list[index]
   alternate list = article list[index+1:max index]
   original UID1 = column data1[index]
   alternate UID1 = column data1[index+1:max index]
   original UID2 = column data2[index]
   alternate UID2 = column data2[index+1:max index]
   for i in range(len(alternate UID1)):
       UID1 Difference list.append(abs(original UID1-alternate UID1[i]))
   for i in range(len(alternate UID2)):
       UID2 Difference list.append(abs(original UID2-alternate UID2[i]))
   sorted UID1 = sorted(UID1 Difference list)
   sorted UID2 = sorted(UID2 Difference list)
   for i in reversed(sorted UID1):
       score index = UID1 Difference list.index(i) + 1
       if score list[score index] >= .85:
           selected article list.append(alternate list[score index])
   for i in reversed(sorted UID2):
       score index = UID2 Difference list.index(i) + 1
       if score list[score index] >= .85:
           selected article list.append(alternate list[score index])
```

UID Paraphrase Challenges

Degeneration/Repetition - fixed or improved via tuning of parameters for the diverse beam search

Detectors Labeling - fixed by expanding the number of articles and/or utilizing a different detector

UID Candidate Selection Process - Make the process more sophisticated so as to pick higher quality candidates

Incorporate UID into the perturbation/obfuscation process rather than after the perturbations has been made

Conclusion

Explore the applicability of UID metric in the task of obfuscation amongst a number of obfuscation methods. Specifically investigate if UID can be used as a guiding metric to result in successful obfuscation in which an automated authorship attributor misattributes an obfuscated article.

Nothing to indicate that UID can be used as a guiding metric...

But study was very small scaled and restricted due to time

Know obfuscation is a feature we can use to distinguish between human and machine authors

Just a matter of developing the correct obfuscation method to exploit this

Future Improvements

- Increase scale of research
 - More articles, different LMs
 - Tune parameters for UP (diverse beam search)
 - Tune parameters for detectors
 - Increase sophistication/complexity of UWS
 - Improve candidate selection
 - denoising/post-processing on alternates
- Try different detectors
- Further implement UID as a more sophisticated guiding metric

References

A. F. Frank and T. Jaeger. Speaking rationally: Uniform information density as an optimal strategy for language production. Proceedings of the Annual Meeting of the Cognitive Science Society, 30, 2008.

Adaku Uchendu, Zeyu Ma, Thai Le, Rui Zhang, and Dongwon Lee. TURING-BENCH: A benchmark environment for the turing test in the age of neural text generation. September 2021.

Clara Meister, Tiago Pimentel, Patrick Haller, Lena Jäger, Ryan Cotterell, and Roger Levy. Revisiting the uniform information density hypothesis. September 2021.

Saranya Venkatraman, He He, and David Reitter. How do decoding algorithms distribute information in dialogue responses? In Findings of the Association for Computational Linguistics: EACL 2023, pages 953–962, Dubrovnik, Croatia, May 2023. Association for Computational Linguistics.